Где и как используют гипс

Время на прочтение статьи = 15 минут

Гипс применяется во многих отраслях жизнедеятельности человека. По своей природе это органическое вещество, которое может образовываться различными путями: осадочным, низкотемпературным или добываться из пещер. Наибольшую распространенность гипс нашел в медицине, из него изготавливаются слепки и фиксаторы для хирургии и ортопедии. Также часто гипс используется в строительстве и музейном деле. Сегодня мы поговорим о химических свойствах гипса, а также об особенностях его применения.

Химический состав

Гипс
В состав гипса входят следующие элементы: Са, S, O.

В состав гипса входят следующие элементы: Са, S, O.

Окись кальция (СаО) 32,6%, трехокись серы (SO3) 46,5%, вода (Н2О) 20,9%. Тонкие кристаллы и спайные пластинки гибки.

Кристаллическая структура слоистая; два листа анионных групп [SO4]2-, тесно связанные с ионами Ca2+, слагают двойные слои, ориентированные вдоль плоскости (010). Молекулы H2O занимают места между указанными двойными слоями. Этим легко объясняется весьма совершенная спайность, характерная для гипса. Каждый ион кальция окружен шестью кислородными ионами, принадлежащими к группам SO4, и двумя молекулами воды. Каждая молекула воды связывает ион Ca с одним ионом кислорода в том же двойном слое и с другим ионом кислорода в соседнем слое.

Разновидности минерала

Алебастр, марьино стекло (лёд девичий, стекло девичье), селенит (атласный шпат)

Обладает заметной растворимостью в воде. Замечательной особенностью гипса является то обстоятельство, что растворимость его при повышении температуры достигает максимума при 37-38°, а затем довольно быстро падает. Наибольшее снижение растворимости устанавливается при температурах свыше 107° вследствие образования «полугидрата» — CaSO4 × 1/2H2O.

При 107oC частично теряет воду, переходя в белый порошок алебастра, (2CaSO4 × Н2О), который заметно растворим в воде. В силу меньшего количества гидратных молекул, алебастр при полимеризации не даёт усадки (увеличивается в объеме прибл. на 1%).

Под п. тр. теряет воду, расщепляется и сплавляется в белую эмаль. На угле в восстановительном пламени даёт CaS. В воде, подкисленной H2SO4, растворяется гораздо лучше, чем в чистой. Однако при концентрации H2SO4 свыше 75 г/л. растворимость резко падает. В HCl растворим очень мало.

Формы нахождения

Характерны сростки в виде «розы» и двойники — т.наз. «ласточкины хвосты»). Образует прожилки параллельно-волокнистой структуры (селенит) в глинистых осадочных породах, а также плотные сплошные мелкозернистые агрегаты, напоминающие мрамор (алебастр). Иногда в виде землистых агрегатов и скрытокристаллическте масс. Также слагает цемент песчаников.

Обычны псевдоморфозы по гипсу кальцита, арагонита, малахита, кварца и др., так же как и псевдоморфозы гипса по другим минералам.

Происхождение

Широко распространённый минерал, в природных условиях образуется различными путями. Происхождение осадочное (типичный морской хемогенный осадок), низкотемпературно-гидротермальное, встречается в карстовых пещерах и сольфатарах. Осаждается из богатых сульфатами водных растворов при усыхании морских лагун, солёных озёр. Образует пласты, прослои и линзы среди осадочных пород, часто в ассоциациях с ангидритом, галитом, целестином, самородной серой, иногда с битумами и нефтью. В значительных массах он отлагается осадочным путем в озёрных и морских соленосных отмирающих бассейнах.

При этом гипс наряду с NaCl может выделяться лишь в начальных стадиях испарения, когда концентрация других растворенных солей еще не высока. При достижении некоторого определенного значения концентрации солей, в частности NaCl и особенно MgCl2, вместо гипса будут кристаллизоваться ангидрит и затем уже другие, более растворимые соли, т.е. гипс в этих бассейнах должен принадлежать к числу более ранних химических осадков.

И действительно, во многих соляных месторождениях пласты гипса (а также ангидрита), переслаиваясь с пластами каменной соли, располагаются в нижних частях залежей и в ряде случаев подстилаются лишь химически осажденными известняками.

Значительные массы гипса в осадочных породах образуются прежде всего в результате гидратации ангидрита, который в свою очередь осаждался при испарении морской воды; нередко при её испарении осаждается непосредственно гипс. Гипс возникают в результате гидратации ангидрита в осадочных отложениях под влиянием действия поверхностных вод в условиях пониженного внешнего давления (в среднем до глубины 100-150м.) по реакции: CaSO4 + 2H2O = CaSO4 × 2H2О.

массы гипса в осадочных породах
Значительные массы гипса в осадочных породах образуются прежде всего в результате гидратации ангидрита, который в свою очередь осаждался при испарении морской воды; нередко при её испарении осаждается непосредственно гипс

При этом происходят сильное увеличение объёма (до 30%) и, в связи с этим, многочисленные и сложные местные нарушения в условиях залегания гипсоносных толщ. Таким путем возникло большинство крупных месторождений гипса на земном шаре. В пустотах среди сплошных гипсовых масс иногда встречаются гнёзда крупных, нередко прозрачных кристаллов.

Может служить цементом в осадочных породах. Жильный гипс обычно является продуктом реакции сульфатных растворов (образующихся при окислении сульфидных руд) с карбонатными породами. Образуется в осадочных породах при выветривании сульфидов, при воздействии образующейся при разложении пирита сер­ной кислоты на мергели и известковистые глины. В полупустынных и пустынных местностях гипс очень часто встречается в виде прожилков и желваков в коре выветривания самых различных по составу горных пород. В почвах аридной зоны формируются новообразования вторично переотложенного гипса: одиночные кристаллы, двойники («ласточкины хвосты»), друзы, «гипсовые розы» и т.д.

Гипс довольно хорошо растворим в воде (до 2,2 г/л.), причём с повышением температуры его растворимость сперва растёт, а выше 24°С падает. Благодаря этому гипс при осаждении из морской воды отделяется от галита и образует самостоятельные пласты. В полупустынях и пустынях, с их сухим воздухом, резкими суточными перепадами температуры, засолёнными и загипсованными почвами, утром, с повышением температуры гипс начинает растворяться и, поднимаясь в растворе капиллярными силами, отлагается на поверхности при испарении воды. К вечеру, с понижением температуры, кристаллизация прекращается, но из-за недостатка влаги кристаллы не растворяются, — в районах с такими условиями кристаллы гипса встречаются в особенно большом количестве.

Местонахождения

В России мощные гипсоносные толщи пермского возраста распространены по Западному Приуралью, в Башкирии и Татарстане, в Архангельской, Вологодской, Горьковской и других областях. Многочисленные месторождения верхнеюрского возраста устанавливаются на Сев. Кавказе, в Дагестане. Замечательные коллекционные образцы с кристаллами гипса известны из м-ния Гаурдак (Туркмения) и других м-ний Средней Азии (в Таджикистане и Узбекистане), в Среднем Поволжье, в юрских глинах Калужской области. В термальных пещерах Naica Mine, (Мексика) были найдены друзы уникальных по размерам кристаллов гипса длиной до 11 м.

Свойства минерала


Цвет Белый, красноватый, монокристаллы часто бесцветные, прозрачные, водяно-прозрачные (марьино стекло).
Цвет черты белый
Происхождение названия От греческого γυψοζ означающего мел или штукатурка
Год открытия Первое упоминание о гипсе у Теофраста 300-325г.
IMA статус действителен, описан впервые до 1959 (до IMA)
Химическая формула CaSO4*2H2O
Блеск стеклянный
перламутровый
шелковистый
тусклый
Прозрачность прозрачный
полупрозрачный
просвечивает
непрозрачный
Спайность совершенная по {010}
средняя по {100}
Излом раковистый
ступенчатый
занозистый
Твердость 2
Термические свойства П. тр. Разлагается с потерей кристаллизационной воды и плавится в белую эмаль. В закрытой трубочке теряет кристаллизационную воду, превращаясь в сульфат кальция (“намертво обожженный гипс”)
Люминесценция Кристаллы гипса с включениями иногда проявляют голубовато-белую, жёлтую, зелёную флюоресценцию
Strunz (8-ое издание) 6/C.22-20
Hey’s CIM Ref. 25.4.3
Dana (7-ое издание) 29.6.3.1
Dana (8-ое издание) 29.6.3.1
Молекулярный вес 172.17
Параметры ячейки a = 5.679(5) Å, b = 15.202(14) Å, c = 6.522(6) Å β = 118.43°
Отношение a:b:c = 0.374 : 1 : 0.429
Число формульных единиц (Z) 4
Объем элементарной ячейки V 495.15 ų
Двойникование часты двойники прорастания по одному из двух законов: 1) двойники ласточкин хвост, пользующиеся наибольшим распространением—двойникование по граням призмы; 2) монмартрские (парижские) двойники—ребра призм расположены параллельно двойниковому шву
Точечная группа 2/m — Prismatic
Плотность (расчетная) 2.308
Плотность (измеренная) 2.312 — 2.322
Дисперсия оптических осей сильная r > v наклонная
Показатели преломления nα = 1.519 — 1.521 nβ = 1.522 — 1.523 nγ = 1.529 — 1.530
Максимальное двулучепреломление δ = 0.010
Тип двухосный (+)
угол 2V измеренный: 58° , рассчитанный: 58° до 68°
Оптический рельеф низкий
Форма выделения Кристаллы таблитчатые, редко столбчатые и призматические; характерны двойники срастания. Друзы кристаллов, плотные тонкокристаллические агрегаты, асбестовидные параллельно-волокнистые массы (селенит), прожилки, желваки
Классы по систематике СССР Сульфаты
Классы по IMA Сульфаты
Сингония моноклинная

Гипсовые изделия

Гипсовые изделия огнестойки. Они прогреваются относительно медленно и разрушаются лишь после 6—8 ч нагрева, т. е. при такой продолжительности пожара, которая маловероятна. Поэтому гипсовые изделия часто рекомендуют в качестве огнезащитных покрытий.

Стальная арматура в гипсовых изделиях в условиях нейтральной среды (рН = 6,5…7,5), особенно при значимой их пористости, подвергается интенсивной коррозии.

Коррозия предотвращается при покрытии стали обмазками: цементно-битумной, цемеитно-полистиролыюй и др. Более надежно предварительно подвергать сталь металлизации цинком или алюминием, а затем покрывать указанными обмазками.

Применение гипса

Гипс_
Гипс как строительный материал был известен в глубокой древности

Гипс как строительный материал был известен в глубокой древности. Более 3000 лет до нашей эры гипс применялся в Египте для возведения пирамид, многие древние архитектурные памятники сделаны из гипса. Производство гипса относится к XII— XIII векам нашей эры. Полуводный гипс применяется в строительстве для штукатурных работ, изготовления архитектурных строительных изделий, в керамической промышленности.

В период Крымской войны 1853—1858 гг. знаменитый хирург Н. И. Пирогов впервые применил гипс при лечении огнестрельных переломов костей в виде повязок из гипсовых бинтов. Гипсовый бинт — это обычный бинт, посыпанный сухим гипсом. Перед наложением его смачивают. Этот метод сохранился до наших дней и широко используется в хирургической практике. В ортопедической стоматологии и зубопротезной технике гипс является самым распространенным материалом. Диапазон его применения очень широк.

Гипс применяется в архитектурном и скульптурном деле, в бумажной промышленности, в медицине, в качестве удобрения в сельском хозяйстве, в производстве серной кислоты, цемента, эмалей, глазурей и красок. Марьино стекло используется в оптической промышленности. Благодаря отличной шумоизоляции и способности быстро схватываться алебастр часто используется при строительстве во время отделочных работ.

Селенит – поделочный камень. Селенит и гипс используются для изготовления декоративной настольной скульптуры малых форм (статуэтки, коробочки, вазочки и др.). Из гипса изготавливают строительные детали: карнизы, плиты, блоки, барельефы. Из гипса и ангидрита получают серу: при накаливании CaSO4 переходит в сульфид кальция CaS, который при контакте с водой образует сероводород. При сжигании H2S при малом количестве кислорода образуется сера и вода.

Зуботехнический гипс

Представляет собой белый, мелкого помола порошок, который при соединении с водой образует кристаллы. Процесс кристаллизации начинается с 4-й минуты после смешивания порошка гипса с водой и должен заканчиваться через 6—7 минут. При добавлении 2,5—3% Р _ Рис, 9. Схема производства зубогехнического гипса. твора поваренной соли в воде затвердевание гипса ускоряется. Поваренная соль для гипса является катализатором. Длительность процесса затвердевания гипса имеет большое значение для получения слепков. Продолжительность пребывания инородного вещества в полости рта вызывает повышение слюноотделения, а иногда тошноту.

Реакцию кристаллизации гипса (схватывания) можно представить следующим образом: при замешивании полугидрата гипса с водой вначале происходит частичное растворение гипса, затем каждая молекула гипса присоединяет к себе 1,5 молекулы воды (гидратируется). Вода вступает в химическое соединение с гипсом. В результате этой химической реакции получается двугидрат гипса.

Двугидрат, или двуводный гипс, в процессе кристаллизации из пластического состояния быстро переходит в твердое состояние. При затвердевании кристаллы гипса вытягиваются в различных направлениях, сращиваются в кристаллические агрегаты — получается монолитная масса гипса.

Реакция кристаллизации сопровождается выделением тепла. Для получения слепочной массы рекомендуется на 100 мл воды брать 150—180 г гипса, т. е. на стакан воды 2—2`/г стакана гипса. Практически это делается так. В резиновую колбу, используемую в зубопротезной технике для замешивания гипса, наливают нужную порцию воды и постепенно засыпают гипс из расчета на одну часть воды две части гипса.

отвешивания гипса
Двугидрат, или двуводный гипс, в процессе кристаллизации из пластического состояния быстро переходит в твердое состояние

Чтобы не производить отмеривания или отвешивания гипса, пропорцию 1 :2 можно определить моментом, когда гипс в резиновой колбе будет возвышаться горкой над поверхностью воды и у стенок колбы не останется сверху свободной воды. При этих условиях после энергичного размешивания смеси шпателем получается однородная слепочная масса. В процессе затвердевания гипса 65% воды идет на гидратацию, остальные 35% постепенно испаряются. Оставшаяся избыточная часть воды испаряется при высыхании гипса. Высохший двуводный гипс представляет собой твердуло пористую массу.

Скорость затвердевания гипса зависит от многих причин. Эта реакция будет протекать быстрее или медленнее в зависимости от величины частиц гипса: чем тоньше помол (частицы гипса меньше), тем больше площадь соприкосновения с водой и, следовательно, реакция происходит быстрее. На скорость затвердевания гипса влияет способ замешивания гипса перед получением слепка. Энергичное перемешивание гипса в резиновой колбе с водой ускоряет кристаллизацию.

Скорость затвердевания зависит от температуры воды, применяемой для замешивания гипса: теплая вода до 37° ускоряет схватывание, горячая и холодная — замедляют. При неправильном хранении гипса во влажном помещении быстро изменяется его качество, из полугидрата гипс может превратиться в двугидрат и будет непригоден для употребления. Отсыревший гипс схватывается медленнее. Для восстановления качества отсыревшего зуботехнического гипса его следует прогреть при температуре 150—170″ на металлическом листе при постоянном помешивании.

Процесс ускорения и замедления затвердевания гипса можно изменять, применяя катализаторы — ускорители реакции, ингибиторы — замедлители реакции. В качестве веществ, ускоряющих реакцию затвердевания гипса, используют 2,5—3% раствор поваренной соли NaCl, сульфат натрия Na2S04, селитру KNO3, сернокислый калий K2SO4.

Вещества, используемые как ингибиторы для замедления процесса кристаллизации гипса, в зубопротезной технике применяются с целью придания затвердевшему гипсу большей прочности, например, при отливке комбинированных моделей, музейных экспонатов.

К замедлителям (ингибиторам) относятся клей столярный, 2—3% раствор буры, 5—6% раствор сахара, глицерин в виде 3—4% водной эмульсии, 5% раствор этилового спирта. Применяя катализаторы, необходимо помнить, что прочность гипса понижается, поэтому их не следует использовать при изготовлении моделей, загипсовки восковых протезных базисов в кювету и на всех других этапах изготовления протезов.

Физические свойства гипса

Зуботехнический гипс
Зуботехнический гипс — »то белый порошок, удельный вес 2,67—2,68; затвердевание гипса начинается через 4—15 минут от начала замешивания и заканчивается через 6—30 минут

Зуботехнический гипс — »то белый порошок, удельный вес 2,67—2,68; затвердевание гипса начинается через 4—15 минут от начала замешивания и заканчивается через 6—30 минут. Зуботехнический гипс надо просеивать через сито, имеющее 900 отверстий на каждый 1 см Предел прочности гипса от 3 до 15 кг/см . Прочность гипса на растяжение через сутки после затвердевания составляет от 3 до 7 кг/см , через 7 суток — от 8,7 до 14,2 кг/см (П. П. Будников).

Прочность гипса зависит от скорости реакции кристаллизации; как правило, чем быстрее происходит кристаллизация, тем меньше прочность гипса. На прочность гипса влияет также количество взятой воды при изготовлении гипсовой смеси. Избыточное количество воды при реакции затвердевания не вступает в химическую связь с гипсом и она оказывается механически включенной между кристаллами. После высыхания такой гипс будет более пористым и непрочным. Прочность гипса можно повысить. При замешивании гипса в воду следует добавить 2—3% буры или затвердевшую, хорошо просушенную гипсовую модель прокипятить в растворе буры или парафине, стеарине.

Однако методика выведения слепка из полости рта еще достаточно сложна и трудоемка, и это рассматривается как отрицательная сторона его применения. Недостатком является также хрупкость. Острые края при разломе гипса могут травмировать слизистую оболочку. Модели, полученные по слепку или оттиску, обладают высокой точностью. В случае поломки гипсовой модели при отделении от слепка просушенный гипс хорошо склеивается силикатным клеем и пломбировочным цементом. При отливке модели по гипсовому слепку отделение слепка от модели требует определенного времени и достаточныхлавыков.

Источники:

  • http://www.catalogmineralov.ru/mineral/gypsum.html
  • http://www.geolib.net/mineralogy/gips.html
  • https://dentaltechnic.info/index.php/lite/vnkashirinzubotehnicheskoematerialovedenie/887-zubotehnicheskij_gips
  • http://www.bibliotekar.ru/spravochnik-72/16.htm

Добавить в закладки
Голосовать ПРОТИВГолосовать ЗА 0
Загрузка...
Добавить комментарий